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This paper is concerned with the downstream evolution of a resonant triad of initially 
non-interacting linear instability waves in a boundary layer with a weak adverse 
pressure gradient. The triad consists of a two-dimensional fundamental mode and a 
pair of equal-amplitude oblique modes that form a subharmonic standing wave in the 
spanwise direction. The growth rates are small and there is a well-defined common 
critical layer for these waves. As in Goldstein & Lee (1992), the wave interaction takes 
place entirely within this critical layer and is initially of the parametric-resonance type. 
This enhances the spatial growth rate of the subharmonic but does not affect that 
of the fundamental. However, in contrast to Goldstein & Lee (1992), the initial 
subharmonic amplitude is assumed to be small enough so that the fundamental can 
become nonlinear within its own critical layer before it is affected by the subharmonic. 
The subharmonic evolution is then dominated by the parametric-resonance effects 
and occurs on a much shorter streamwise scale than that of the fundamental. The 
subharmonic amplitude continues to increase during this parametric-resonance stage 
- even as the growth rate of the fundamental approaches zero - and the subharmonic 
eventually becomes large enough to influence the fundamental which causes both 
waves to evolve on the same shorter streamwise scale. 

1. Introduction 
Boundary-layer transition experiments often involve controlled forcing of the un- 

steady flow by relatively two-dimensional single-frequency excitation devices such as 
vibrating ribbons, heating strips, or acoustic speakers. The resulting initial distur- 
bances are nearly two-dimensional and well described by spatially growing linear 
instability modes. This behaviour can persist over long streamwise distances when 
the excitation levels are sufficiently small, but three-dimensional effects eventually 
come into play, as evidenced by the appearance of A-shaped structures in flow- 
visualization experiments. These structures can either be aligned or staggered in 
alternating rows. 

The aligned arrangement is commonly referred to as 'peak-valley' splitting and 
was originally observed by Klebanoff, Tidstrom & Sargent (1962). The staggered 
arrangement, which usually appears at lower excitation levels, is now believed to 
be the result of a resonant-triad interaction between a pair of oblique subharmonic 
modes (which originate from the background disturbance environment) and the 
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two-dimensional fundamental mode. The significance of this type of interaction 
was originally realized by Raetz (1959) and subsequently analysed for viscosity- 
dominated Tollmien-Schlichting-type instabilities by Craik (1971), Mankbadi, Wu 
& Lee (1993), and many others. Craik (1971) also proposed that the aligned (or 
Klebanoff) arrangement could result from a resonant-triad interaction between a pair 
of oblique modes at the forcing frequency and the small two-dimensional instability 
mode that is invariably generated at the first harmonic of this frequency (see $5.2 of 
Kachanov & Levchenko 1984 for a more complete discussion of this issue). All of 
the relevant modes can then be generated by the excitation device and do not have 
to emanate from the background disturbance environment. However, the observed 
gradual transition from a two- to a three-dimensional flow structure can only occur 
if the (common) amplitude of the oblique modes is able to exceed that of the (small) 
two-dimensional first harmonic that is the cause of the enhanced growth in the Craik 
(1971) model. This behaviour would obviously be favoured if the oblique modes were 
unable to suppress the growth of the first harmonic until they themselves become 
very large. This allows the oblique modes to continue their super-exponential growth 
until they become larger than the more slowly growing two-dimensional fundamental 
mode. 

Since transition in technological devices usually occurs in regions of decelerating 
flow, Goldstein & Lee (1992, hereinafter referred to as G&L) analysed the resonant- 
triad interaction between two equal-amplitude oblique modes (which form a standing 
wave in the spanwise direction) and a single two-dimensional mode in a boundary- 
layer flow with a relatively weak adverse pressure gradient. The wavelengths in their 
analysis are therefore large, cc (pressure gradient)-i, and the corresponding growth 
rates are small, cc (pressure gradient)2. The relevant waves have a well-defined 
common critical layer, which turns out to be of the non-equilibrium (or growth- 
dominated) type rather than the equilibrium (or viscosity-dominated) type associated 
with Tollmien-Schlichting waves. The G&L analysis, which applies to both the 
subharmonic and peak-valley transition processes, shows that the first interaction 
between the initially linear spatially growing waves takes place within this common 
critical layer and results in an enhanced oblique-mode growth rate due to a parametric- 
resonance (or secondary) instability of the nearly periodic motion produced by the 
basic boundary-layer flow and the plane wave. G&L also show that the oblique modes 
do not affect the plane wave until the ratio of their common amplitude to that of the 
latter becomes cc (pressure gradient)-;, which supports Craik’s (1971) contention that 
the peak-valley transition processes is due to a resonant triad interaction. G&L go 
on to show that the parametric-resonance stage is followed by a fully coupled stage 
which always ends in a singularity at a finite downstream position in the inviscid 
limit. 

In contrast to the situation considered by G&L where the plane wave is completely 
linear in the parametric-resonance stage, the present investigation is concerned with 
the case where the common amplitude of oblique modes is small enough at the start 
of the parametric-resonance stage so that the plane wave becomes nonlinear before 
being affected by the oblique modes. The nonlinearity occurs within the plane-wave 
critical layer and causes a reduction of the growth rate of this wave. This behaviour 
is particularly relevant to the subharmonic transition process since it is most likely to 
occur when the initial common amplitude of the oblique modes is small compared to 
that of the plane wave. 

This paper is organized as follows. The problem is formulated in 92, where it is 
shown how the critical-layer interaction gradually evolves from a resonant triad of 
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FIGURE 1. Asymptotic structure of the unsteady boundary-layer flow. I, main boundary layer; 11, 
inviscid Tollmien wall layer; 111, critical layers (hatched, fundamental; shaded, subharmonic) ; IV, 
(passive) Stokes layer. A, initial parametric-resonance stage; B, nonlinear-fundamental stage; C, 
fully coupled stage. 

initiaily non-interacting instability waves on a decelerating boundary-layer flow. The 
triad consists of a two-dimensional fundamental mode and a pair of equal-amplitude 
oblique subharmonic modes, all of which are small-growth-rate solutions to the 
Rayleigh stability problem. The motion outside the critical layer remains a linear 
perturbation of the steady two-dimensional adverse-pressure-gradient boundary-layer 
flow. The wave-interaction effects are confined to a critical layer which evolves 
through a number of different stages (see figure 1). The initial parametric-resonance 
stage is analysed in 93. The two-dimensional fundamental mode continues to exhibit 
linear growth in this stage and the initial wave interaction is weak in the sense that it 
enters as an inhomogeneous term in an appropriate critical-layer problem rather than 
as a coefficient in the leading-order advection/diffusion operator. The subharmonic 
amplitude is explicitly determined by a single integro-differential equation which 
is solved analytically in Appendix B. The downstream asymptotic expansion of 
this solution determines the scaling for the next stage of evolution in which the 
fundamental becomes nonlinear. This occurs when the amplitude of the fundamental 
is K (pressure gradient);. The subharmonic, whose growth is now controlled by 
parametric-resonance effects, evolves on a much shorter streamwise scale than the 
fundamental. Its critical layer is, therefore, much thicker than that of the funda- 
mental. 

The relevant critical-layer problems are formulated in $4, where it is shown that the 
fundamental is now governed by a viscous generalization of the strongly nonlinear 
inviscid non-equilibrium critical-layer problem derived in Goldstein, Durbin & Leib 
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(1987).j- The subharmonic-amplitude equation can again be solved analytically. Its 
solution is given by the downstream asymptotic expansion of the solution for the 
previous stage - but with the linearly growing fundamental amplitude replaced by the 
corresponding strongly nonlinear critical-layer solution. This result shows that the 
subharmonic continues to grow even when the self-interaction effects drive the fun- 
damental growth rate towards zero. It follows that the assumed asymptotic structure 
eventually must become invalid and, consequently, a new stage of development must 
occur. In this stage, the subharmonic reacts back on the fundamental and both waves 
evolve on the same shorter streamwise lengthscale. This means that the fundamental 
and subharmonic critical layers are again of equal thickness. This fully coupled stage 
is analysed in $5 where the relevant amplitude equations are shown to be the same as 
in G&L - but with the linear growth terms omitted. Finally, the results are discussed 
in #6 and 7. 

2. Formulation 
2.1. Problem statement 

The basic boundary-layer flow is taken to be two-dimensional and incompressible with 
free-stream velocity U,(s), where s measures the distance along the solid boundary 
from the leading edge (or stagnation point). The coordinates, time, all velocity 
components, and pressure are non-dimensionalized by d, d/U,(L), Ue(L),  and po U;(L), 
respectively, where L is the downstream distance to a point in the region where the 
instability waves first interact, 

d = (2v 1' U,ds) ' /U,(L) 

is a lengthscale characteristic of the local boundary-layer thickness, and po and v are 
the density and kinematic viscosity of the fluid. The origin of the non-dimensional 
coordinate system (x ,  y, z ) ,  which measures the distance in the streamwise, transverse 
and spanwise directions, is attached to the wall at s = L. Changes in the base flow 
then take place on the long viscous scale 

x3 = x /Ree ,  (2.2) 

where Re[ = 8Ue(L)/v  is a local Reynolds number based on d, and are described by 
the laminar boundary-layer equations. The normalized base-flow pressure gradient 
,u = -U,Ue,,, where the subscript x3 denotes differentiation with respect to that 
variable, is taken to be a small positive quantity. Curvature effects are assumed to be 
smaller still and will be neglected herein. 

The local Reynolds number is assumed to be large enough so that the unsteady flow 
is nearly unaffected by the viscous boundary-layer growth over the entire streamwise 
region in which the nonlinear interaction takes place. Consequently, the streamwise 
base-flow velocity U ( x 3 , y )  can be treated as a function of the transverse coordinate 
y only, the transverse base-flow velocity V ( x 3 , y )  [= O(Re; ' ) ]  does not enter into 
the unsteady problem, and the base-flow pressure P(x3)  = i(1 - U;) is essentially 
constant. Since ,u is assumed to be small, U can be treated as a perturbation about 

t See Maslowe (1986) for a review of nonlinear critical layers. Benney & Maslowe (1975) were 
the first to discuss growth-rate effects but they only did so in the context of an equilibrium critical 
layer. 
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the Blasius profile Uo, i.e. 

u=uo-02pu1+... , 
and the corresponding expression for the scaled wall-shear stress can be written as 

a, =&-o2jll,  +... , (2.4) 

where io = 0.46960 is the Blasius value and o % 1 is related to p through p = 0 2 p  
with p = O(1). 

As in G&L, the upstream unsteady flow consists of an essentially inviscid resonant 
triad of non-interacting spatially growing instability waves - a single two-dimensional 
fundamental mode and two equal-amplitude subharmonic oblique modes that form 
a standing wave in the spanwise direction. Expanding (2.3) about y = 0 shows that 
the distance of the base-flow inflection point from the wall is O(o). This implies that 
the most unstable instability waves must have O(o-’) wavelengths and O(a4) spatial 
growth rates (Reid 1965). Then, each of the three modes will have a distinct critical 
layer centred about the transverse position where the real part of its phase velocity 
equals the streamwise base-flow velocity. But since the resonance condition requires 
that the instability waves have nearly equal phase speeds, the critical levels coincide 
with the required degree of approximation. Putting 

R = oI3Rec = 0(1) (2.5) 

ensures that viscous effects will enter the critical-layer dynamics at the same order as 
the linear-growth effects, but will not affect the unsteady motion outside the critical 
layers (to the required order of approximation). 

2.2. The main boundary-layer region 
Since the unsteady flow remains essentially linear in the main part of the boundary 
layer, the total flow in this region is effectively (i) = (!) + Re [.(x2)eix ( ) ]  

where u = (u, u, w) is the velocity, p is the pressure, 

(2.7) x 2 = o x  

is the slow streamwise scale on which the linear growth occurs, d ( x 2 )  el and 
&9(x2) e 1 are slowly varying amplitude functions for the fundamental and the sub- 
harmonic, respectively, and g(x2, y )  Q 1 is a mean-flow correction that only enters in 
the fully coupled stage. Also, 

x = ab(x - oZt), (2.8) 

where 8, P and 1 are the scaled streamwise and spanwise wavenumbers and phase 
speed correct up to but not including O ( 0 3 )  terms, and x is a scaled (relative) spanwise 

4 

z = oP(l+ 03x)z, (2.9) 



348 D. W; Wundrow, L. S. Hultgren and M .  E.  Goldstein 

wavenumber detuning of the subharmonic disturbance. s = 21 is the scaled Strouhal 
number, or (non-dimensional) angular frequency, of the fundamental disturbance. 
a,, en, Gn, and $,, are functions of y that are determined by the usual inviscid 
three-dimensional instability equations to the required level of approximation. Hence, 

(2.10) 

A 

0, = -ikn&, (2.1 1) 

(2.12) 

(2.13) 

for n = 0,1, where D denotes differentiation with respect to y .  The & are governed 
by the Rayleigh equations 

(U - cn)(D2 - k,”)& - D2U& = 0 for n = 0,1, (2.14) 

subject to the boundary conditions &(O) = 0 and on + 0 as y -+ +m; (1 + n)c, = 

a0 = a [ B  - a3i (In at)’] , (2.15) 

a1 = a [i;. cos 8 - 03i (In g)’] , (2.16) 

k; = + P i ,  PO = 0, P1 = ag(l+ 03x), it2 = +ti2 +g2, 8 = arctan(2plB) and the prime 
denotes differentiation with respect to x2. The resonance condition, co = c1 + 0(a4), 
for the upstream linear stage, implies that 

k = B  (2.17) 

and, consequently, that 8 = in. 
The relevant asymptotic solution to (2.14) is most easily constructed by re-expanding 

the long-wavelength solution of Miles (1962) (see Reid 1965) for small c, (Graebel 
1966; Goldstein et al. 1987; G&L; and others). However, the result is not uniformly 
valid as y --+ 0 and a separate solution to (2.14) must be constructed in a thin wall 
layer, which also contains the critical layer. 

02s /an ,  

- 

2.3. The inviscid Tollmien wall layer 
To this end, the scaled transverse coordinate 

Y = y / o  (2.18) 

is substituted into (2.14), using (2.15) and (2.16), to show that the solution in this 
region satisfying the inviscid boundary condition at Y = 0 is 

& = a ( A o Y  +ar  [a:(Y -Y,)+a;Y,] + 0 3  [F+b:(Y - Y , ) + b ; Y , ] } ,  (2.19) 

F = pc [$ y 2  + Y,(Y - Y,) In 1 Y - Y,I + Y: In Y,] - &A; Y 3 ( ~  + ~ Y J ,  (2.20) 

where 0 < r < 3, p ,  = p - ~ ( A o Y , ) ~  is a scaled base-flow vorticity gradient at the 
critical level yc = aY, and the k superscript indicates different values for Y Y,. The 
discontinuity in the solution (2.19) results in a jump in the streamwise perturbation 
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velocity component, 

an icr 82 A% = [o'(a, + - a;) + 03(b,+ - b;)] = -+A (2) , 
k,  dY 

(2.21) 

across the critical layer. The integration constants a: and b' (which are at most 
functions of the long streamwise scale over which the wave growth occurs) and 
the exponent r are determined by matching this jump with the one induced by the 
critical layer. The velocity jump at 0 (or) is introduced to balance a wave-interaction- 
induced critical-layer velocity jump that occurs at a lower order than the 0(03) jump 
associated with linear-growth effects. The a: can be set equal to zero in the initial 
parametric-resonance stage since the lower-order jump only occurs in the later stages 
of evolution. 

2.4. Matching 
Setting a: = 0 and matching the main-boundary-layer and inviscid-Tollmien-wall- 
layer solutions to O(04 In o) shows that 

~ = a ~ + ~ ~ ~ + ~ 2 ~ ~ + ~ 3 1 ~ ~  B ~ ~ ,  (2.22) 

where 

Eo = (A&, (2.23) 

E l  = (1 - ;51,s, (2.24) 

(2.25) 

c13L = (p - S/2A,) s/2n;, (2.26) 

and 51, 52, and 53 are certain integrals that only depend on the Blasius profile and 
are given in Goldstein (1983, p.71). They take on the numerical values 0.928 09, 
-2.093 22, and 1.287 77, respectively. Matching the solution to 0(a5) shows that the 
scaled velocity jump for the fundamental is 

b$ - b, = AM0 [xi + i (In 4 ' 3  , 

a2=--I 2 (-/&)' s { [351 (1 - $51) + 252 + 531  s + FAi}, 

(2.27) 

where A = 2A$/E3, 

MO = 1 + o (3 - i51) ( S / n o )  4 + 0 ( 0 2 ) ,  (2.28) 

and xi is a real constant that is fully determined by the matching but its explicit form 
is not given here because it is not used in the subsequent analysis. 

2.5. The Stokes layer 
As usual, a completely passive Stokes layer is induced by the no-slip boundary 
condition at the wall. The relevant solution in this region is 

1 & = O& [ Y + of&; (=) n + l  ' { exp [ -e-'$ (E) ' $1 - I } ]  , (2.29) 
n + l  

which shows that the Stokes-layer thickness is 0 ( o y )  relative to the width of the 
boundary layer. 

12 F L M  264 
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2.6. The critical layer 

As already indicated, the wave-interaction effects are confined to the critical layer 
and, at least for the subharmonic, are weak in the sense that they enter through 
inhomogeneous terms in an appropriate critical-layer problem rather than though a 
coefficient in the leading-order advection/diffusion operator. This ultimately implies 
that the subharmonic amplitude &? can be determined from equations involving only 
a single independent variable, which in the present case turn out to be of the integro- 
differential type. As in studies of more conventional weakly nonlinear flows (Benney 
& Gustavsson 1981; and others), these equations are most easily derived by first 
rewriting the governing equations, i.e. the equation of continuity and the (viscous) 
momentum equation, in a somewhat different form. This amounts to taking the 
divergence of the momentum equation to obtain an equation for the Laplacian of the 
pressure, then combining the transverse derivative of this equation with the Laplacian 
of the transverse component of the momentum equation to eliminate the pressure 
terms and thereby obtain 

a a 
dY aZ V2v  -V2u-Vu = 2 w )  - --J(u, w )  + -J(u,u)] , (2.30) 

where V 2  is the Laplacian and J( . ,  .) = a(., . ) /a (x , z )  is a horizontal Jacobian derivative. 
Since V2v is the transverse component of the curl of the (total) vorticity V x u ,  (2.30) 
describes the dynamics of the horizontal vorticity components. This approach is 
related to the one used by Wu (1992) in that the transverse velocity component is the 
‘primary’ dependent variable in the critical layer. 

3. Initial parametric-resonance stage 
The streamwise region of primary interest is the one in which the fundamental is 

strongly nonlinear. Since the solution in this region does not involve a subharmonic 
that can be matched onto a corresponding wave in the upstream linear region (in 
which all the waves are decoupled), it is necessary to introduce an intermediate 
parametric-resonance stage. The fundamental is completely linear in this stage and 
both waves evolve on the long scale x 2 .  Then, as shown in G&L, linear-growth and 
parametric-resonance effects will enter the critical-layer dynamics at the same order 
if 

d = d3A,  ( x 2 )  A = o(1). (3.1) 

&? = 6 B , ( x 2 )  B = 0(1), (3.2) 

The subharmonic scaling, 

is worked out in $5. For now, it is sufficient to note that 6 is small enough to avoid 
back-reaction of the subharmonic on the fundamental. 

As indicated above, the a; can be set equal to zero in the Tollmien solutions (2.19) 
and (2.20) in the present region. Matching with the main boundary-layer flow then 
shows that the subharmonic velocity jump is given by 

where 
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Linear-growth effects can only influence the critical-layer dynamics when the thick- 
ness of this layer is of the same order as the linear growth rate, i.e. O(04). The 
appropriate transverse coordinate for this region is therefore 

(3.5) 
3 q = ( y  - yc ) /04  = ( Y  - Y,)/o . 

The limits as Y + Ycf of the Tollmien solutions, (2.19) and (2.20), show that the 
critical-layer flow expands like 

u = CT [ E  + 033LWq + o6,il: Ycq + c9 ( ijicq2 - CX~R-')] 

+ d3Re  [ (dt '  + 03dt))  AeiX] + 60-~i i?)  cos Z + . . . , (3.6) 

v = o ' ~ ~ , I , Y ~ R - ~  + d 5 R e  [ (-iFdoYc + 03$)) Aeix] 

+ 602 {Re [ (-i&Y, + 0~6:)) BeiXi2] + 068r ) }  cos Z + . . . , (3.7) 

p = o",ilx;?R-' + o14Re (3Loi2Ae1X) + GoRe ( i,loCBeiX/2) cos Z + . . . , (3.8) 
where the ellipsis denote higher-order terms for the basic, fundamental, and subhar- 
monic components of the flow and ,il: = p - k(,loYJ2. The expansion for the spanwise 
velocity w is analogous to the subharmonic part of (3.6) and, therefore, is not written 
out explicitly. ii, , v, , and $) possess expansions in terms of o, containing terms up 
to and including O(a3 In 0). They are given by the relevant terms in the inner limit 
of the Tollmien solutions. $t) is independent of q, whereas if) and $' are linear 
functions of q. The non-parallel base-flow terms in (3.6) and (3.7) and the streamwise 
pressure-gradient term in (3.8) do not affect the critical-layer dynamics. 

Substitution of the expansions (3.6) and (3.7) into the spanwise vorticity equation 
produces, for the fundamental, 

^ ( I )  

khere 

(3.10) 

is the leading-order advection/diffusion operator in the critical layer; and substitution 
of the expansions (3.6)-(3.8) into the streamwise momentum equation and (2.30) 
produces, for the subharmonic, 

9 2% -(') = ?,loSRe 4 (iBeiX/2) , (3.11) 

(3.12) 

- ix a(2) Integration of Ae au, /aq and a2ijr)/aq2 across the critical layer and using (2.21) 
produces the following expressions for the scaled velocity jumps b t  - b, and b t  -by : 

(3.13) 

12-2 
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Combining these expressions with those obtained from the flow outside the critical 
layer, i.e. (2.27) and (3.3), then gives the matching conditions 

(3.15) 

Equations (3.9) and (3.15) correspond to the linear-growth critical layer and there- 

,j = jOeKX2, (3.17) 
fore possess the simple solution 

where 20 is a constant and K = K ,  + iKi,  with 

I C ~  = ~E~j&/2AiMo (3.18) 

Equations (3.11) and (3.12) are solved in Appendix A. Substitution of the result 
being the linear growth rate. 

into the velocity-jump condition (3.16) leads to 

B ’ = 4 x  5 [ K - I i  8 x ( O ) ] -  l S 4  B 

+ 4iy4 l I ( x 2  - 5 ) 2 e - K ~ ( x 2 - 5 ) 3 / 6 ” ( ~ ) ~ *  (25 - x2)dt, (3.19) 

where the asterisk denotes complex conjugation, x = M o / M I ,  

y = 3z@’/80S2~:M1, (3.20) 

R = S 3 ~ : R / l ; B 5  (3.21) 
and 

is a rescaled critical-layer Reynolds number. Equation (3.19) implies that 

B -, BO exp { !x [ K  - t i x ( ~ o ~ ) t ]  x2} as x2 + -co, (3.22) 

where BO is a constant. This shows that B matches onto the appropriate linear-growth 
critical-layer solution. 

An analytic solution to (3.19) is derived in Appendix B. Its large-x2 asymptotic 
expansion is given by (B 20), which can be renormalized to obtain 

(3.23) 
Equations (3.17) and (3.23) show that the subharmonic growth rate becomes expo- 
nentially large as x2 -, +a. 

4. Nonlinear- fundamental stage 
Since (3.17) and (3.23) imply that the fundamental and subharmonic continue 

to grow with increasing x2, the solutions of the preceding section must eventually 
become invalid. In the present analysis, this occurs when the nonlinear convection 
of vorticity becomes of the same order as the linear-growth effects within the critical 
layer for the fundamental, i.e. as shown by Goldstein et al. (1987), when d = O(a7) 
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or equivalently when x2 = O(1nr6) .  Equations (3.17) and (3.23) suggest that the 
fundamental and subharmonic amplitude functions should then be of the form 

d = 07~(x;)e-iX~, A = 0(1), (4.1) 

B = o(I), (4.2) g = 6o-fBexp [ o-+@(x,+) - iixo I , Q, = 0(1), 

where 
B = B'O'(X,+) + oW)(x; )  + ... , (4.3) 

x; = x2 + 6~;'  lno, x; = 0(1), (4.4) 
XO = 6 1 ~ ~ ~ ; '  In o is minus the fundamental phase shift over the initial-parametric- 
resonance region, and @ turns out to be purely real. d can be of the usual 
multiple-scales form, but 39 must be allowed to take on a more general WKBJ form 
in order to deal with the shorter (but still much longer than a wavelength) spatial scale 
induced by its asymptotically larger growth rate vis-d-vis that of the fundamental. The 
subharmonic amplitude 9 is required to be o(o9) throughout the present streamwise 
region in order to preclude back-reaction of the subharmonic on the fundamental. 

The inviscid Tollmien solution for the fundamental is still given by (2.19)-(2.22) 
with a$ = 0, since its critical-layer velocity jump (which is now induced by the 
self-interaction effects) is 0 (03). However, the appropriate inviscid Tollmien solution 
for the subharmonic is given by (2.19)-(2.22) with r = and a: # 0, since the 
velocity jump induced by the parametric-resonance effects is now O(o4). Matching 
with the main boundary-layer region shows that the subharmonic velocity jumps are 
now given by 

a;' - a; = :iAMl@', (4.5) 

. (4.6) 

Since the thickness of the fundamental critical layer remains O(04), even though 
the vorticity balance differs from the preceding stage, its relevant scaled transverse 
coordinate is still given by (3.5). The subharmonic critical-layer thickness, which is 
determined by the balance of growth and base-flow convection effects, is now O(o;), 
since the subharmonic growth rate g'-'dB/dx = 0 3  @' + . . . . The appropriate scaled 
transverse coordinate for this 'outer' critical layer is therefore 

- - t  @I - 793-1@2 + iia; (AoS) b t  - b; = 2 ( A o / S )  [ K ~  + :i (In B)'] - 8 

y = ( y  - y c ) / o $  = ( Y  - Yc)/oi, (4.7) 

which reflects the fact that the fundamental and the subharmonic critical levels 
coincide. The fundamental remains linear in this outer critical layer and is therefore 
given by the inner limit of the corresponding inviscid Tollmien solution for Fj = O(1). 

4.1. The critical layer for  the fundamental 
The inner-critical-layer expansions are essentially a reordering of the linear-critical- 
layer expansions of the preceding section. They are now 

u = o [z + 0 3 2 4  + d p , t  Y,y + fJ9 ( ipe$ - Cx2R-1)] 

+07 [ Re ( y  u Aeix+ ) + o 3 u b"] + ... + s.t., (4.8) 

(4.9) v = o'5iAoY,2R-' + 09Re [ (-iFrAoYc + 03$) ) AeiXC ] +...+ s.t., 

p = O'~PX~R- '  + 08Re (AoCAeiX') + . . . + s.t., (4.10) 
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where X +  = X - Xo,  6:' and 6;) are the same as in the preceding section, and s.t. 
indicates terms associated with the subharmonic disturbance which do not influence 
the dynamics of the fundamental in this streamwise region. As before, the base-flow- 
divergence and pressure-gradient terms are purely passive in these expansions. 

Substitution of the expansions (4.8) and (4.9) into the spanwise vorticity equation 
yields 

where 

(4.12) 

is the leading-order advection/diffusion operator in the inner critical layer. The 
difference from the linear problem (3.9) is due to the advection of unsteady spanwise 
vorticity by the transverse velocity component that now enters the vorticity balance. 

Integrating a u f ) / a q  across the critical layer and using (2.21) produces an expression 
for the velocity jump b; - b; in terms of the critical-layer solution, which is analogous 
to that given by (3.13). Combining this result with (2.27) yields the matching condition 

(4.13) 

Equations (4.1 1)-(4.13) are the viscous counterparts of the inviscid nonlinear 'un- 
steady' critical-layer equations derived in Goldstein et al. (1987). These equations are 
to be solved subject to the initial condition 

A + XoeKX: as x: + -a, (4.14) 

which ensures that the solution matches onto the upstream linear instability wave. 

4.2. The critical layer for  the subharmonic 
The inner limits of the Tollmien-region solutions (2.19) and (2.20) show that the flow 
in the outer critical layer expands like 

u = 0 C + oi1,ij + ofjirY,fj + o6;pcij2) + a7Re (i#'AeiX') 

+8o-i ( u r )  + a#u(,l)) COSZ + ... , (4.15) 

( 

" > I  1 5 1  2 -1 v = 0 2 L ~ Y c  R + 09Re -iE& Y, + oiQ Aeix+ 

+ 802 {Re [ (-ikAoYc + oji$')) BE+] + 0 3 v y )  + o$zf)} cosZ + . . . , (4.16) 

(4.17) w = &-jw(p)sinZ +... , 
p = 011jix2R-' + o*Re (LocAeiXf) + &Re [ (Lo2 + oj#)) BE+] cosZ + . . . , 

(4.18) 

where 8 = 6/04 and E+ = exp(a-l@ + iX+/2) have been introduced for clarity. at', 
$), and t(,l' possess expansions in terms of 0 that are given by the corresponding 
terms in the inner limit of the Tollmien-region solutions. They are all constants, except 
61') which is a linear function of i j .  The base-flow-divergence and pressure-gradient 
terms in (4.16) and (4.18) have no effect on the critical-layer dynamics. 
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Substitution of the expansions (4.3) and (4.15)-(4.18) into the continuity and 
streamwise momentum equations as well as (2.30) yields at ‘leading-order’ 

(4.19) 

(4.21) 

where 

91 = E @  + anoq- a ax+ (4.22) 

is the ‘leading-order’ approximation to the advection/diffusion operator in the outer 
critical layer. At ‘next-order’, 

where 

is the ‘next-order’ correction to the advection/diffusion operator and 

41 ^ ( I )  = A o q )  + ‘ia^‘” p1 + i&E@’ = -;i& (6Ea;Yc - iE@’ + 8 E l o q )  . (4.26) 

Using (2.21), after integrating d2vr)/a42 and a2$)/dq2 across the outer critical 
layer, produces the matching conditions 

(4.27) 

- [i& ( b t  - b;) + i (a: - a;) @’] B‘O). (4.28) 

The ‘leading-order’ problem - as defined by (4.20), (4.21), and (4.27) - actually 
involves two levels of approximation since substitution of the expansion (2.22) (and 
the corresponding expansion for Z) into those equations produces an intermediate 
problem of lower order than the ‘next-order’ problem defined by (4.19), (4.23), and 
(4.24). However, it is easier to retain the higher-order terms and simply discard them 
at the end of the analysis by expanding the solution a posteriori. 
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4.3. Solution of the ‘leading-order’ problem for the subharmonic 

Equations (4.20) and (4.21) imply that 

uy) = Re (GY’E,) , (4.29) 

(4.30) zf) = Re [ (6;: + 
where a?), if/, and alfi depend on x2 and 9, and only the if! term contributes to the 
velocity jump condition (4.27). Substituting (4.29) and (4.30) into (4.20) and (4.21 , 
solving the resulting set of (relatively trivial) algebraic equations in sequence for fii ) 
and a!!!, using the latter result to evaluate the integral in (4.27), and combining that 
result with (4.5) yields 

b 

(4.3 1) 

(4.32) 

argB(O) = arg(iA), (4.33) 
which show that @ matches the dominant exponential term in (3.23). 

4.4. Solution of the ‘next-order’ problem for the subharmonic 
Equations (4.19)-(4.24) imply that 

w y )  = Re (GY)E+), (4.34) 

ur)  = Re (Gy)E+) , (4.35) 

ZI~) = Re [ (i3l;i + O!:ieix’) E+] , (4.36) 

where Gy), f i f ) ,  a!;!, and depend on x2 and 6, and, again, only the if! term of (4.36) 
contributes to the velocity jump (4.28). Substitution of (4.34)-(4.36) into (4.19)-(4.24) 
again leads to a set of algebraic equations which can be solved in sequence for Gy), 
fiy), and fii:!. The latter result can then be used to evaluate the integral in (4.28). This 
result, when combined with (4.5) and (4.6), yields 

B(’) = iAIA/-’R(’)* + K ,  (4.37) 

where 

K = - Q ’ - ~ { ~ B ( o ) ’ - +  [K-;i(n,~)i,] ~ ( ~ ) - - i i ( a r g ~ ) ’ ~ ( ~ ) }  2 

- (&E)-’ [F (a; - a;*) + %i@’] B(O). (4.38) 

Taking the complex conjugate of (4.37) and substituting the resulting expression for 
I?(’)* back into (4.37) leads to the following solvability condition : 

K + iAIAI-’K* = 0, (4.39) 

which implies that 

~ ( 0 ) ’  = [ + K ,  + i i  ( a rg~) ’ ]  ~ ( 0 ) .  (4.40) 
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Integration of the latter equation, using (4.33), gives 

B ( O )  = B?) exp [ + K , X ~  + i i  a r g ( i ~ ) ]  . (4.41) 

Equations (4.32) and (4.41) show that (4.2) will match onto (3.23) provided the inte- 
gration constant in (4.41) is given by B f )  = B~JBO//(yJkol)~. In fact, the subharmonic 
amplitude in the present stage is given, to the required order of accuracy, by the down- 
stream asymptotic expansion (3.23) of the corresponding previous-stage solution, but 
with the linearly growing fundamental amplitude A replaced by the appropriately 
scaled strongly nonlinear-critical-layer solution A,  x2 expressed in terms of x l ,  and x 
replaced by unity. 

4.5. The composite solution 
A uniformly valid composite solution, say can be obtained for the entire 
parametric resonance stage by multiplying the subharmonic amplitude functions (3.2) 
and (4.2) and dividing by their common part which, apart from the appropriate 
gauge function, is given by (3.23). After some manipulation, this composite solution 
becomes 

(4.42) 

where Bt and Z are given by (B 3) and (B 1), respectively. 

5. Fully coupled stage 
The continued growth of the subharmonic throughout the nonlinear-fundamental 

stage, cf. (4.2), (4.32) and (4.41), implies that the subharmonic will become large 
enough to affect the fundamental. This occurs when = O ( o y ) ,  i.e. in view of (4.2), 
when @(xl)  = O(d), where 

and leads to a new, fully coupled stage of evolution in which the subharmonic 
is influenced by both parametric-resonance and self-interaction effects. Since the 
subharmonic growth rate is asymptotically large on the x l  scale, this stage first 
emerges while x i  is still O( 1). The present analysis assumes that x l  is at least O( 1) in 
the fully coupled stage, which requires that d be O(1). Equation (5.1) then determines 
the corresponding upper limit on the initial subharmonic amplitude scaling 6. 

Since the back-reaction of the subharmonic on the fundamental causes the latter 
to evolve on the same streamwise scale as the former, the appropriate streamwise 
lengthscale for this region is 

A = 0 2  ln(o#/d), (5.1) 

x1 = o-;(xl - 5,) = a3x + o-;(6~;'1no - t,), (5.2) 

where 5, is determined by @(<,) = d. The fundamental and subharmonic critical-layer 
thicknesses will then both be O(o3) and (4.7) is, therefore, the relevant transverse 
coordinate. The appropriate amplitude scaling for this stage is 

d = O ~ A " ( X ~ ) ~ - ~ ~ O ,  A = 0(1), (5.3) 

= ayB(xl)e-1X0/2, B = 0(1), (5.4) 
with the spanwise-variable mean-flow change, Re [e12z$!3?(x1, y ) ] ,  now being of the same 
order as the subharmonic instability wave that produced it. To account for the shorter 
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streamwise lengthscale of the amplitude variation, the streamwise wavenumbers (2.15) 
and (2.16) are now written as 

(5.5) a0 = o [E - o f i  ( I ~ A ) ’ ]  , 

ctl = c  [ ~ ; c o s ~ - o $ i ( l n ~ ) ’ ] ,  (5.6) 
where the prime denotes differentiation with respect to xl. 

The appropriate inviscid Tollmien solutions are given by (2.19) and (2.20) with 
r = 5 and u’ # 0 since the wave-interaction effects now produce both fundamental 
and subharmonic critical-layer velocity jumps at O ( c f ) .  Matching with the flow in 
the main-boundary-layer region then shows that the leading-order velocity jumps for 
the fundamental and subharmonic are given by 

(5.7) 

(5.8) 

u i  - u i  = 2i ( A ~ / s >  5 ( ~ n  A)’, 

u: - u: = i i  ( n o / $ >  4 (1nB)’. 

u = 0 c + oLl,Fj + 03u(’) + 0!u(2) + 06u(3) + 09u(4)  +. . .] , [ 
1 

The inner limits of the Tollmien-region solutions show that the critical-layer flow 
expands like 

(5.9) 

(5.10) v = cry [Re (-i@ioYcBeiX+’2) cos 2 + o;d2) + 03v(3) + . . . , 
(5.11) 

p = 09 [Re (illoEBeiX+/2) cos 2 + + 03p(3 )  + . . . , (5.12) 1 
where the u(‘), d’), w(‘), and p(’) are functions of X+, xl, Fj and 2. 

Integrating the fundamental component of &h4)/dFj and the subharmonic compo- 
nent of 3u(’)/3ij across the critical layer, and using the leading-order term in (2.21), 
produces expressions for the velocity jumps u i - u i  and u: --u: that can be combined 
with the corresponding expressions obtained from the flow outside the critical layer, 
i.e. (5.7) and (5.8), to obtain the following matching conditions: 

(5.13) 

(5.14) 

Substituting (5.9)-(5.12) into the continuity and momentum equations produces a 
coupled set of equations that determine the d’), d‘), w(’), and p(‘) .  Not surprisingly, 
these equations are the same as the corresponding equations in G&L, i.e. their (5.14)- 
(5.21), but with their i j, 9 ,  Ao, A, U;, and A replaced by Fj, it, A”, iB, 10, and 09/R,  
respectively. The streamwise scale is shorter and the critical-layer thickness is larger 
than in the G&L analysis, but this only changes the transverse boundary conditions, 
which are obtained by matching the critical-layer solutions with the inviscid-Tollmien- 
layer solutions. The altered boundary conditions produce a reordering of the terms 
associated with the basic flow vis-d-vis those of the G&L analysis. The net result 
is a shift of the linear-growth terms to higher-order problems, which means that 
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the relevant amplitude evolution equations can be obtained by simply dropping the 
linear-growth terms from the corresponding equations given in G&L, i.e. their (5.50) 
and (5.51). (The G&L amplitude equations have also been derived in a different 
context by Wu 1992.) In the present notation, these equations become 

(xl - 51)2k(51)B*(251 - xl)d51 

where 

K1(xil51,52) = &(xi - 51) [2(x1 - 5 1 ) ~  - (xi - 51)(x1 - 52)  3(x1 - 5212] 

K2(x1151,52) = (x1 - 5 1 ) h  - 52)(2Xl - 51 - 52), 

K3(Xi(<i, 52, 53)  = +(XI  - 51) {(XI + 51 + 5 2  - 353)(x1 - 52)(x1 - 251 + 52)  

- (xi 4- 51 - 252) [(Xi + 5 1  - 2<2)2 -  XI - 5d2] } , 

(5-17) 
(5.18) 

(5.19) 

and M = $2; (nos) j .  Substituting (5.2) into (4.1) and (4.2) and expanding the resulting 
expressions in the limit of CJ + @shows that matching with the nonlinear-fundamental 
region requires that the solutions to (5.15) and (5.16) satisfy the upstream conditions 

.2 -+ A(<,),  (5.20) 

B + B'O'( 5s)e@J'(rs'"I, (5.21) 
as x1 -+ -a, rather than those given in G&L. These conditions reflect the fact that 
both the fundamental amplitude and the subharmonic growth rate remain constant 
on the x1 lengthscale in the upstream region, i.e. the nonlinear-fundamental region. 

6. Rescaled equations 
The strongly nonlinear critical-layer equations (4.1 1)-(4.13) can be used to deter- 

mine the fundamental amplitude throughout the entire parametric-resonance stage 
because they reduce to the appropriate linear equations, (3.9), (3.10) and (3.15), as 
x$ .+ -a. These equations and the composite solution (4.42) for the subharmonic 
can be rescaled to minimize the number of parameters by introducing the variables 

X+ = K , X ;  + 1n(rldol), 

X = X +  + argAo + 1c~x2+, 

Y = ( 2 ; ~  + K i ) / K r ,  

JZZ+ = T A  exp [-i (arg A. + icix2+)] , 

(6.1) 

(6.2) 

(6.3) 

(6.4) 
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FIGURE 2. Wavenumber us. frequency for a Falkner-Skan boundary-layer flow at various values 
of p. Solid lines, exact solutions; dashed lines, asymptotic solutions. 
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where Y = i o a 3 / S ~ ;  and d t  turns out to be purely real. Equations (4.11) and (4.13) 
along with the upstream-matching condition (4.14) then become 

d d t  
Q sin XdXdY = -n- 

-m dX+ ’ 
f /+m 

and 

d t -+e’+  as x+-+-w. (6.9) 
The uniformly valid composite solution for the subharmonic amplitude (4.42) becomes 

(6.10) 

where 4 = a6Y/y  and it follows from (4.4), (6.1) and (B 1) that 

y = = + -  In e. (6.11) 

The solutions to (6.7) and (6.8) must match with the ‘outer’ flow in the inviscid 
Tollmien region, which requires that Q be periodic in X and satisfy the homogeneous 
boundary condition Q -+ 0 as r -+ fa. This strongly nonlinear critical-layer problem 
is solved using the numerical procedure given in Goldstein & Hultgren (1988) and 
the reader is referred to that paper for details of the method. The analytic solution 
(B9) with 3t replaced by unity is used to determine the function Bt in the composite 
solution (6.10). 

7. Results and discussion 
Figure 2 is a comparison of the (complex) wavenumber CI predicted by the long- 

wavelength/weak-adverse-pressure-gradient asymptotic solution to that determined 
from a corresponding numerical solution to the Rayleigh stability problem. The 
curves correspond to a Falkner-Skan boundary layer in which case the first correction 
to the wall-shear stress i1 is 1.2989 and the base-flow vorticity gradient at the critical 
level pc  is p - (i + 02p)Z2.  The dashed curves correspond to the asymptotic solution. 
The first three terms in (2.22) were used to compute the real part of the wavenumber 
in figure 2(a). This gives a good approximation to the exact solution at p = 0.1, which 
is somewhat greater than half the value of p at separation. It is necessary to include 
O(a2) terms in IC, in order to obtain similar agreement for the imaginary part of the 
wavenumber, ai = -a41c,.. This can easily be done, for the Falkner-Skan profile, by 
extending the outer linear solution to higher order. The resulting expression for IC, is 
just (3.18) but with 10 replaced by 20 - 0’11 and 
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added to Mo. The resulting approximation for IC, produces the best results when left 
as a rational function of CT. Figure 2(b) shows that this approximation is reasonably 
good even when p = 0.1. 

The rescaled fundamental amplitude d t  depends only on the rescaled critical-layer 
Reynolds number R, which characterizes the ratio of inertia to viscous-diffusion 
effects in the critical layer. Figure 3(b) shows that the growth rate of the fundamental 
drops off sharply and decreases towards zero once nonlinearity comes into play. As 
in the shear-layer analyses of Goldstein & Hultgren (1988) and Hultgren (1992), the 
presence of viscosity, no matter how small, counteracts the inviscid roll-up of vorticity 
(cf. Goldstein & Leib 1988) and eventually leads to a slow algebraic growth of d+ 
with increasing P / R .  

The rescaled subharmonic amplitude g+ not only depends on R but also on ii-, which 
characterizes the effective wavenumber detuning (see (B 7)), y which characterizes the 
effective initial phase difference between the subharmonic and the fundamental (see 
(B 8)), and the small parameter e, K (pressure gradient)3, which characterizes the 
ratio of the fundamental amplitude in the initial parametric-resonance stage to that 
in the nonlinear-fundamental stage and, therefore, determines the distance on the X+ 
scale between these two stages, cf. (6.11). The rescaled subharmonic amplitude gt 
and growth rate Re(gt’/@) are plotted in figures 3-5 for various values of R, it, and 
w, with e = 0.05 which approximates the value of e for the most rapidly growing 
fundamental in a Falkner-Skan boundary-layer flow with ,u = 0.08. These figures 
show that the parametric resonance is initiated at a relatively short distance (on the X+ 
scale) upstream of the location where the fundamental becomes nonlinear. The initial 
subharmonic amplitude scaling 6 is left unspecified throughout the entire parametric- 
resonance stage (apart from the restriction given in $ 5 )  because the subharmonic is 
determined by linear equations there. The vertical distance between the fundamental 
and subharmonic curves in figures 3(a), 4 and 5 is, therefore, arbitrary. 

Since the instability waves are initially non-interacting, the subharmonic grows in 
accordance with linear theory until the fundamental amplitude becomes large enough 
for the parametric resonance to come into play. This happens while the fundamental 
instability wave is still linear and occurs when the fundamental component of the 
transverse velocity fluctuation is of the order of the linear growth rate raised to the 

power. In the Craik (1971) analysis, which applies to Tollmien-Schlichting waves 
at finite Reynolds numbers, the initial wave interaction occurs when the fundamental 
amplitude is of the order of the linear growth rate. Mankbadi et al. (1993), who 
consider an appropriate large-Reynolds-number limit of the CrQlk (1971) problem, 
find that the initial interaction occurs when the fundamental component of the 
transverse velocity fluctuation is of the order of the linear growth rate raised to the a 
power. These differences arise because the wave interaction takes place within a non- 
equilibrium (or growth-dominated) critical layer in the present analysis rather than 
throughout the external flow as in the Craik (1971) analysis or within an equilibrium 
(or viscosity-dominated) critical layer as in the Mankbadi et al. (1993) analysis. 

Depending on the values of ii-, and y (figures 4 and 5) ,  the parametric-resonance 
effects may either enhance or reduce the initial subharmonic growth rate, but always 
lead to an increase in the subharmonic growth rate, proportional to the quarter 
power of the local fundamental amplitude, sufficiently far downstream, cf. (3.23). The 
Craik (1971) and Mankbadi et al. (1993) solutions also exhibit faster than exponential 
growth in the parametric-resonance stage, but with the growth rate increasing in direct 
proportion to the fundamental amplitude. Section B.2 of Appendix B shows how the 
exponential growth of the fundamental can convert an equilibrium critical layer of 
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FIGURE 3. Scaled fundamental and subharmonic amplitudes us. shifted long streamwise scale for 

2, = 0, y = zn, Q = 0.05 and various values of R. I 

the type that appears in the Mankbadi et al. (1993) analysis into a non-equilibrium 
critical layer of the type considered herein (see Goldstein 1994 for a detailed discussion 
of this issue). 

The subharmonic continues to grow as an exponential of an exponential until 
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nonlinear self-interaction effects alter the growth rate of the fundamental. This occurs 
when the fundamental component of the transverse velocity fluctuation is of the order 
of the linear growth rate squared. The subharmonic evolution is then controlled by 
parametric-resonance effects and occurs over a streamwise lengthscale that is short 
compared to the scale on which the fundamental evolves but still long compared to 
a wavelength. The continual increase in the subharmonic growth rate is then reduced 
and eventually becomes algebraic once the fundamental critical layer ages into a 
quasi-equilibrium stage (figure 3b). This assumes, of course, that the fully coupled 
stage does not come into play before the fundamental reaches its quasi-equilibrium 
stage. 

Figure 3 shows the rescaled subharmonic amplitude and growth rate for several 
values of the parameter R. This parameter affects the subharmonic solution through 
the usual viscous-diffusion terms in the initial parametric-resonance stage but only 
indirectly through the fundamental amplitude in the nonlinear-fundamental stage, 
since the subharmonic critical layer is strictly inviscid there. Decreasing R, there- 
fore, affects the composite solution (6.10) in two ways. First, the initiation of the 
parametric resonance is delayed because a larger fundamental amplitude is required 
for the parametric-resonance effects to balance the increasing viscous-diffusion effects 
(figure 3a); and second, the final subharmonic growth rate is enhanced because of the 
increasing saturation level of the fundamental amplitude (figure 3b). Note that the 
subharmonic growth rate appears to oscillate about a constant value for the largest 
value of R shown in figure 3, which gives the impression that the subharmonic is again 
growing exponentially. However, the fundamental amplitude has not yet reached its 
quasi-equilibrium stage in this particular case. Once this occurs, the subharmonic 
growth rate again will exhibit the slow algebraic increase evident in the other curves. 

Figures 4 and 5 show the rescaled subharmonic amplitude for various values of 
the parameters ii-, and y. These parameters only affect the solution in the initial 
parametric-resonance stage, i.e. they only influence Bt(n). G&L show that ii-, and 
y alter the development of the subharmonic by changing the direction of energy 
exchange between the subharmonic and fundamental. This effect is responsible for 
the oscillations in figures 4 and 5. G&L also find that the energy transfer to the 
subharmonic is maximized when ii-, = 0 and y = in. This result, also evident in 
figures 4 and 5, implies that detuning delays the ultimate subharmonic amplification 
produced by the parametric resonance (see 5B.3 of Appendix B) and thereby gives 
the fundamental more ‘time’ to reach its nonlinear saturation amplitude. 

The fully coupled stage occurs when the subharmonic amplitude becomes O(cry), 
which is larger than the O ( d o )  scaling of the G&L analysis. The difference is due to 
the thicker critical layer in which the present interaction takes place. The instability- 
wave amplitudes can be made parameter independent in the fully coupled stage by 
introducing the rescaled variables 

A+ = lOA/A([,), 

B+ = A(t,)tB/MfcP’([,), (7.3) 
where A+ is defined so that the amplitude evolution equations (5 .15)  and (5.16) reduce 
exactly to (5.51) and (5.50) of G&L less the linear-growth terms. The initial conditions 
(5.20) and (5.21) are then 

At -+ 10, (7.4) 
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FIGURE 6.  Scaled fundamental and subharmonic amplitudes us. long streamwise scale in the fully 
coupled stage. 

- 

> (7.5) 
as JI.1 + -a. The computed solutions for At and Bt are shown in figure 6. They 
were determined by using the numerical procedure given in G&L. As in G&L, the 
self-interaction of the subharmonic produces a further enhancement of its growth and 
ultimately leads to a singularity at a finite downstream position, which now occurs 
much more abruptly due to the shorter streamwise scale, cf. (5.2). This explosive 
growth is then transferred to the fundamental through the mutual-interaction and 
back-reaction effects. 

G&L derive local asymptotic solutions valid in the neighborhood of the singularity. 
Those results, given by their (6.1)-(6.8), also apply to the present singularity and 
suggest that the analysis will break down at an O(a3) xl-scale distance upstream 
of the singularity. The critical layer then expands to fill the inviscid Tollmien wall 
layer which therefore becomes fully nonlinear while the instability wave amplitudes 
are still small. The next stage of evolution will be governed by the three-dimensional, 
unsteady 'triple deck' equations, but with the viscous terms deleted. 

jjt + ,i$,;Y, 

The authors wish to thank Dr Sang So0 Lee for many stimulating discussions and 
advice on adapting the G&L numerical code to the fully coupled problem of the 
present study. 

Appendix A. Solution of (3.11) and (3.12) 
Equations (3.9)-(3.12) imply that 
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jjy) = Re r:: 0 elX/2 + 5fiei3x/2) , (A 2) 

and it follows that only the 5:; term in (A 2) contributes to the velocity jump condition 
(3.16). Substituting ( A l )  and (A2) into (3.11) and (3.12) and taking the transverse 
Fourier transform, defined by 

leads to two equations for the subharmonic that can be written in the following 
forms : 

p2  0(x2, 5) = ~in,SB(~,)e-~(~)H’(-5)1 (A 4) 

92Q(x2,5) = p 1 -S [,ii,~(xz)e -f(t)H’(-<) - A ( x ~ ) ~ ~ ~ * ( x z ,  -<)e-2f(t)] , (A 5) 

where 

m) = 2 t 3 / 3 @ n O ~ ,  (A 7) 

0exp(f)  and Qexp(f) are the Fourier transforms of iy) and d26f;/8y2, respectively, 
H is the Heaviside step function, and the asterisk denotes complex conjugation. 

Integration of (A 4) along the characteristic 

s- = EAOX2/4C - 512 (A 8) 

(A 9) 

Substitution of this result into (A5) and integration of the result along the s- 
characteristic yields 

of (A6) shows that 

0 ( ~ 2 , 5 )  = iicB (x2 + 225/&&) H(-<). 

The result (3.19) can now be obtained from the identity 

by performing a few relatively simple manipulations. 

Appendix B. Analytic solution for B 
B.l. The general case 

A convergent-series solution for B is obtained in this appendix. The manipulations 
are most easily carried out in terms of the rescaled variables 

(B 1) 

(B 2) 

si: = 7~x2 + In(yl&l), 

A+ = yAexp [-i (argko + xix2)] , 
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Bt = J B ~ J - ’ ( ~ ~ A ~ J ) + ~ B  exp [--+i (argAo + K , x ~ ) ]  . iB 3) 
After changing the variable of integration in (3.19) from to 2(x2 - l), the amplitude- 
evolution equations, (3.17) and (3.19)’ and the associated initial condition, (3.22), 
become 

AT = e’, (B 4) 

iB 5 )  

and 

as X+-m (B 6) 
where i? = fx + iii-,. The rescaled subharmonic amplitude therefore depends on 
three real parameters : R which characterizes the ratio of inertia to viscous-diffusion 
effects ; 

(B 7) 

(B 8) 

Bt’ = ii-Bt + ri lffi ~2e-’~/48RAt(X - .Ls)Bt* (X - s)&, 

Bt + ezt+lyl 

iz, f { A x  [ K ,  - (nos) 4 x] + ;(% - 1 ) K , }  K T 1 ,  

which characterizes the effective wavenumber detuning; and 

v, = arg B~ - arg A. - ii-, In(ylAol), - 1  

which characterizes the effective initial phase angle between the subharmonic and the 
fundamental. 

Following G&L, the ansatz 

n=O n=O 

is substituted into (B5) and like powers of ex are equated to obtain the recursion 
relations 

3 where go = 1 and ho = eo/2pq , p = + iEi, q = 1 2 + i?, 

en = i(n + q)3  s2 exp [-s3/48R - ( n  + q)s]  ds LX 
87&n + q)3Hi” (-(lhR)i(n + 4)) for R # co 

for R = co ’ 
(B 12) 

={1 
and Hi denotes the Airy function integral defined on p. 448 of Abramowitz & Stegun 
(1964). Equations (B 10) and (B 11) are easily summed to obtain 

2n 

2n+ 1 

where ( z ) ,  = T ( z  + n)/T(z) denotes the generalized factorial function and T ( z )  
denotes the gamma function. 
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Application of the ratio test shows that the two sums in (B9) are absolutely 
convergent for all X. They are mainly determined by their first few terms when 
X < - 1 but more terms rapidly become important as X increases. The moduli of the 
individual terms tend to increase with n until, as required by absolute convergence, a 
maximum is reached and the moduli of the succeeding terms decrease as n increases. 
It follows from the properties of the gamma and Airy functions that both sums have 
a sharp peak near n = N = [iei'] in the limit as X -+ 00. The dominant contribution 
to each sum then comes from terms in the immediate neighbourhood of this peak and 
can be determined by Laplace's method for sums (Bender & Orszag 1978, p. 304). 

In this method, the summation is centred on the index of the peak term by 
introducing j = n - N ,  where ljl remains small compared to N ;  but may take on 
values greater than N i ,  and g, and h, are replaced by their large-n approximations 
which are obtained from (B 13) and (B 14) by using 

n m 

n e m - l  = [I + o (np2)]  n e m - l  as n -+ co 
m=l m= 1 

together with Stirling's formula (Abramowitz & Stegun 1964, p. 257). Thus, the first 
sum in (B 9) becomes 

) 
m 

j=--EN 
8 

gne2"% - (:) ' G, exp ( 
n=O 

as 3 -+ co, where E > 0 characterizes the region of summation and 
m 

G, = 2p-4n-2 r  (p)r ( q ) 3  IT em-l (B 17) 
m=l 

is a complex constant that, in view of (B 12) and the definitions of p and q, depends 
only on R and ii-,. The sum on the right-hand side of (B 16) is determined to leading 
order by extending the region of summation to 00 and converting the result into a 
Riemann sum for the error function, i.e. 

as X --+ co. Substituting (B 18) into (B 16) then yields 
c4 

x + 4et") 
(2  - :- 3q - 

C gne2nn - G ,  exp 
n=O 

as X -+ 00. An analogous procedure shows that the complex conjugate of the right- 
hand side of (B 19) describes the leading-order asymptotic behaviour of the second 
sum in (B9). Substitution of these results into (B9) shows that 

jjt - jjLe'2 exp + x ~  + 4e$' ) ( (B 20) 

(B21) 

y = 1,- argG,, in which case the asymptotic behaviour of Bt is determined by 

as 3 -+ 00, where 

is a real constant that depends on R, iii and y.  Equation (B20) is invalid when 

higher-order terms. 

= 2(G,I cos ( y  + arg G, - i n )  
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B.2. The viscous limit of ( B  5 )  

The integrand of (B5) becomes highly concentrated around s = 0 in the viscous 
limit R + 0. The rescaled subharmonic amplitude equation therefore reduces to the 
ordinary differential equation 

(B 22) Bt’ = &t + 8iRAtBt* 

which differs from the equation obtained by Craik (1971) in that the parametric- 
resonance coefficient is purely imaginary. The leading-order term in the small-o 
expansion of Bt is all that is needed for the subsequent analysis so 3t is replaced by 
unity. As is well known, the solution to (B 22) that satisfies (B 6) is 

Bt = (4R) l-’ r (p)e~z+iv,Ip-l (8Re’) + i (4R) ’-’* r (p*)eg‘-ivIp* (8Re’) , (B 23) 

where I,(z) denotes the modified Bessel function. It follows from the asymptotic 
behaviour of the Bessel functions for large values of their argument (Abramowitz & 
Stegun 1964, p. 377) that 

Bt - 71-4 Ir (p)l cos [v + arg r (p) - Ri In (4R) - $711 eif exp ( $ R  + 8Re’) (B 24) 

as 51 -+ co - which can also be obtained by applying Laplace’s method to (B9) after 
replacing g, and h, with their leading-order small-R behaviour. 

Comparing (B 24) with (B 20) shows that the approximation (B 22) is not uniformly 
valid as R -+ co. In fact, keeping the next-order term in the small-R expansion of 
(B5), shows that the next-order correction to the right-hand side of (B22) is 

- iin: 2 (16R) Hi(0)At (y*Bt* - 8iRAt* Bt) , 

which implies that (B 22) is only valid when x 4 - t ln(16R). As X increases beyond 
this region, non-equilibrium effects become equal to and eventually exceed viscous- 
diffusion effects as a result of the exponential increase in the subharmonic growth 
rate produced by the parametric resonance. The subharmonic critical layer is then of 
the non-equilibrium type and the rescaled subharmonic amplitude is again given by 
(B20)’ but with B i  replaced by its small-R limit. 

The transition between the large-X asymptotic behaviour (B20) and that given by 
(B 24) takes place in the streamwise region 7 E X + tln(16R) = 0(1) where viscous- 
diffusion and non-equilibrium effects are of equal importance. As pointed out by 
Goldstein (1994), the relevant solution for the subharmonic amplitude will take on 
the WKBJ form 

Bt = E-qei4b(T) exp [E-’ Jlk g(s)ds] , 

as E + 0, where E z (16R)f, and 6(’) and g turn out to be purely real. Substituting 
(B26) into (B5), changing the variable of integration from s to ES,  expanding the 
resulting integrand in a Taylor series about E = 0, and making use of the integral 
representation of Hi (Abramowitz & Stegun 1964, p. 448) leads to 

+;ne’ [2~”Hi”(-g) - Hi”’(-g) - Hi””(-g)g‘] b* + O(E) (B28) 

as E + 0, where the prime denotes differentiation with respect to the argument. 
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Substituting the expansion (B27) into this equation and equating like powers of e 
shows that 

g = Lne’Hi’’(-- 2 d, (B 29) 

~ ( 1 )  - j j (1)*  = b(o)’/g’ + [ (2 - 4) (lng)’ + (lng’)’] 6(0)/g’. (B 30) 

Taking the complex conjugate of (B 30) and substituting the resulting expression for 
b(l)* back into (B 30) leads to a differential equation for b(O) which is easily integrated 
to obtain 

where 6f) is a real constant. It follows from (B29) that 

6“) = 6f’(g) B (g’) 1 ,  (B 31) 

and, therefore, that the solution (B26), (B29) and (B31) will match onto (B24) as 
?-+--coif 

660) = 2tn-f (r (p)l cos [y + arg r ( p )  - Ei  ln(4R) - :n] . (B 33) 

Since (B32) implies that 

Bt $-’6f) exp [ e-1 lT (g - ea’) di] exp ( f? + 4e-’ea’ ) (B 34) 

as ? -+ +a, the solution (B 26) clearly has the same downstream asymptotic behaviour 
as (B20). 

B.3. 7he strongly detuned limit of ( B  5 )  
The solution for the subharmonic amplitude in the strongly detuned limit liti\ -+ 00 

behaves similarly to the highly viscous solution. The subharmonic critical layer is 
always of the non-equilibrium type in the strongly detuned limit but with the dynamics 
dominated by linear-growth effects when j;: + In it: and by parametric-resonance effects 
when R 9 In it:. The linear solution (B 6) is the leading-order solution in the former 
region, while the solution in the latter region is again given by (B20) but with BL 
replaced by its large-& limit, i.e. 

BL - 2-+it:e-;lzil cos [y + 4iti (In 1itil + In 2 + 1) rt tn - in] (B 35) 

for iti >< 0. Equation (B35) shows that the amplitude of a strongly detuned subhar- 
monic at the end of the initial parametric-resonance stage is, as would be expected, 
much smaller than the corresponding amplitude of its order-one Ri counterpart. 
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